CONFERENCIAS Y CURSOS INTRODUCTORIOS
CONFERENCIAS
David Ariza Ruiz (Universidad de Valencia)
Abstract measures of noncompactness and fixed points for nonlinear mappings.
Resumen: In this talk, we study the existence of fixed points for a mapping by using abstract measures of noncompactness. Thus, we can obtain some generalizations of Darbo and Sadovskii’s theorems and we also give a characterization for the existence of fixed points of a mapping which is not necessarily continuous. Finally, we solve an open problem proposed by I.A. Rus in 2001.
Cleon Barroso (Universidade Federal do Ceará)
On the fixed point property in Banach spaces with unconditional Schauder basis
Resumen: In this talk, we revisit the FPP in spaces with unconditional basis. The talk will start with some reminders on Schauder bases and their impact on the theory. Next, in the second part of the talk, we will discuss both old and recent fixed point results. In particular, we will explain how a classical result of P.-K. Lin can be generalized in the class of separable dual spaces. Then, in the last part, if we have some time left, we will discuss some possibly new developments with respect to equivalent renormings in spaces with an unconditional basis for which the FPP for non-expansive mappings may or may not be valid.
Chayan Adelki De la Cruz Reyes (CIMAT-Mérida)
An overview on multi-valued contraction or contraction type mappings
Resumen: The Hausdorff metric is widely used in both abstract and applied areas of mathematics including nonsmooth analysis, optimization theory, calculus of variations and is closely connected with the metric fixed point theory. The Hausdorff metric has allowed us to obtain results that extend the Banach contraction principle, as the Nadler’s fixed point theorem.
In this talk we study some results about the existence of fixed points for multi-valued nonself mappings which are contractions or type contractions.
Jesús Garcia-Falset (Universidad de Valencia)
Soluciones periódicas de ecuaciones diferenciales de segundo orden en espacios de Banach
Resumen
Agnieszka Gergont (Maria Curie-Skłodowska University)
On isomorphic embeddings of c into L1-preduals and some applications
Enrique Llorens Fuster (Universidad de Valencia)
Some remarks about generalized nonexpansive mappings
Roque Vidal Luciano Gerardo (Benemérita Universidad Autónoma de Puebla)
Una introducción a la teoría del Punto Fijo en Espacios Normados Ordenados
Resumen: En la época contemporánea, la Teoría del Punto Fijo ha avanzado mucho en los espacios normados ordenados, en gran parte debido a la fuerte relación entre su estructura topológica y de orden parcial. En esta charla comentaremos algunos de estos resultados de punto fijo que son aplicados a la Teoría de integración.
Omar Muñiz Pérez (CONACYT-CIMAT Mérida)
Characterizations of the existence of solutions for Variational Inequality Problems in Hilbert spaces
Resumen: In this talk we will show some necessary and sufficient conditions for the existence of solutions to the variational inequality problem: Find $x \in K$ such that $\langle F(x), y-x \rangle \geq 0$, for every $y \in K$, where $K$ is a nonempty closed convex subset of a real Hilbert space $H$ and $F:K \to H$ is a monotone and continuous operator. These characterizations will be given in terms of approximate fixed points sequences and by Leray-Schauder condition.
Łukasz Piasecki (Maria Curie-Skłodowska University)
Weak* fixed point property and the space of affine functions
Jeimer Alveiro Villada Bedoya (Maria Curie-Skłodowska University)
Separable Lindenstrauss spaces whose duals do not contain weak star closed convex unbounded sets having the AFPP
CURSOS INTRODUCTORIOS
Técnicas recurrentes en la Teoría de Punto Fijo
Víctor Pérez García (Universidad Veracruzana)
Técnicas 1
Víctor Pérez García (Universidad Veracruzana)
Técnicas 2
Carlos Alberto Hernández Linares (Universidad Veracruzana)
Técnicas 3